Dave Baggett: How did they fit Crash 1 into such little memory space [Answer]


Crash 1 beta, Provided by Unseen64

Crash 1 Beta, image provided by Unseen64

Wonder how Crash 1 is such a technical feat for the PSX?

Here is one of the things Naughty Dog did in order to fix Crash into the PSX, hence being smaller than many of our MP3 music files!

Dave Baggett’s answer:

Here’s a related anecdote from the late 1990s. I was one of the two programmers (along with Andy Gavin) who wrote Crash Bandicoot for the PlayStation 1.

RAM was still a major issue even then. The PS1 had 2MB of RAM, and we had to do crazy things to get the game to fit. We had levels with over 10MB of data in them, and this had to be paged in and out dynamically, without any “hitches”—loading lags where the frame rate would drop below 30 Hz.

It mainly worked because Andy wrote an incredible paging system that would swap in and out 64K data pages as Crash traversed the level. This was a “full stack” tour de force, in that it ran the gamut from high-level memory management to opcode-level DMA coding. Andy even controlled the physical layout of bytes on the CD-ROM disk so that—even at 300KB/sec—the PS1 could load the data for each piece of a given level by the time Crash ended up there.

I wrote the packer tool that took the resources—sounds, art, lisp control code for critters, etc.—and packed them into 64K pages for Andy’s system. (Incidentally, this problem—producing the ideal packing into fixed-sized pages of a set of arbitrarily-sized objects—is NP-complete, and therefore likely impossible to solve optimally in polynomial—i.e., reasonable—time.)

Some levels barely fit, and my packer used a variety of algorithms (first-fit, best-fit, etc.) to try to find the best packing, including a stochastic search akin to the gradient descent process used in Simulated annealing. Basically, I had a whole bunch of different packing strategies, and would try them all and use the best result.

The problem with using a random guided search like that, though, is that you never know if you’re going to get the same result again. Some Crash levels fit into the maximum allowed number of pages (I think it was 21) only by virtue of the stochastic packer “getting lucky”. This meant that once you had the level packed, you might change the code for a turtle and never be able to find a 21-page packing again. There were times when one of the artists would want to change something, and it would blow out the page count, and we’d have to change other stuff semi-randomly until the packer again found a packing that worked. Try explaining this to a crabby artist at 3 in the morning. 🙂

By far the best part in retrospect—and the worst part at the time—was getting the core C/assembly code to fit. We were literally days away from the drop-dead date for the “gold master”—our last chance to make the holiday season before we lost the entire year—and we were randomly permuting C code into semantically identical but syntactically different manifestations to get the compiler to produce code that was 200, 125, 50, then 8 bytes smaller. Permuting as in, “for (i=0; i < x; i++)“—what happens if we rewrite that as a while loop using a variable we already used above for something else? This was after we’d already exhausted the usual tricks of, e.g., stuffing data into the lower two bits of pointers (which only works because all addresses on the R3000 were 4-byte aligned).

Ultimately Crash fit into the PS1’s memory with 4 bytes to spare. Yes, 4 bytes out of 2097152. Good times.

Source: Quora (Answer)

Advertisements

One thought on “Dave Baggett: How did they fit Crash 1 into such little memory space [Answer]

Leave a comment below!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s